sábado, 20 de junio de 2009

Conductor de la Electricidad


Superátomos magnéticos mejorarán la electrónica molecular
Un conjunto de nueve átomos de cesio y vanadio demuestra
ser un imán conductor de electricidad

Científicos estadounidenses de la VCU de Estados Unidos, especializados en el estudio de los llamados “superátomos”, han descubierto un “superátomo magnético” que, formado por un átomo de vanadio rodeado de ocho de cesio, combina características magnéticas y conductoras. Este sería como un imán conductor de la electricidad bastante pequeño. El superátomo podría tener aplicaciones futuras en el terreno de la “electrónica molecular”, una rama de la ciencia que aspira a crear dispositivos formados por moléculas, como dispositivos integrados más compactos o procesadores de datos más potentes.

Un equipo de investigadores de la Virginia Commonwealth University (VCU) de Richmond, en Estados Unidos, ha descubierto un “superátomo magnético” que, podría ser utilizado para crear dispositivos electrónicos moleculares para una generación de ordenadores más rápidos, y con mayor capacidad de memoria. Según publica la VCU en un comunicado, este superátomo recién descubierto está compuesto por ocho átomos de vanadio (elemento que forma parte de algunos imanes superconductores) y ocho átomos de cesio (que es el más reactivo y menos electronegativo de todos los elementos). La agrupación actúa como un diminuto imán que tendría la misma fuerza magnética de un único átomo de manganeso, al tiempo que permite a electrones con una orientación específica de giro o de “espín” fluir a través del entorno de los átomos de cesio. El conjunto es como un imán conductor de la electricidad.

Estabilidad y magnetismo

Siguiendo una serie de estudios teóricos, Shiv Khanna, profesor del Departamento de física de la VCU y sus colaboradores, Ulises Reveles, Reber, Clayborne y otros científicos del Naval Research Laboratory, en Estados Unidos, y del Instituto de Investigación Harish-Chandra de la India, examinaron las propiedades electrónicas y magnéticas del conjunto formado por un átomo de vanadio rodeado de múltiples átomos de cesio. Así, descubrieron que cuando una agrupación tiene ocho átomos de cesio adquiere una estabilidad extra, derivada de alcanzar un estado electrónico completo.

Un átomo es una configuración estable cuando su estructura más externa está completa. Por eso, cuando un átomo se combina con otros, tiende a perder o a ganar electrones de valencia para adquirir una configuración estable. Los electrones de valencia son los que se encuentran en el último nivel de energía del átomo y pueden formar enlaces. Son, los responsables de la interacción entre átomos de distintas especies o del mismo tipo. Según Khanna, la agrupación observada tendría un momento magnético (medida del magnetismo interno de un conjunto de átomos) de cinco magnetones de Bohr (el magnetón de Bohr es una constante física), lo que viene a ser más del doble del valor que pueda tener un átomo de hierro en un imán de hierro sólido. Por otro lado, este momento magnético es similar al de un átomo de manganeso, Khanna dice que la agrupación de átomos podría ser como una “imitación” de dicho átomo.

Electrónica molecular

Un importante objetivo de este trabajo era encontrar qué combinación de átomos podría dar lugar a un conjunto estable. El cesio es un buen conductor de la electricidad, por lo que el superátomo cuenta con un carácter magnético y también con la facilidad de la conductividad a través de sus capas externas, explica Khanna. Una combinación como la que han creado estos investigadores podría dar lugar a importantes desarrollos en el campo de la “electrónica molecular”, que es la rama de la ciencia que estudia el uso de moléculas orgánicas en la electrónica. Se espera que dispositivos formados por moléculas ayuden al desarrollo de la memoria de datos no volátil (tipo de memoria que puede retener información almacenada incluso cuando no recibe electricidad), de dispositivos integrados más compactos o de procesadores de datos más potentes, entre otros adelantos, afirma el investigador. Por otra parte, Khanna y su equipo están realizando estudios preliminares con moléculas compuestas de dos de estos superátomos, y han realizado ya algunas prometedoras observaciones que podrían tener aplicaciones en la llamada espintrónica.

La espintrónica es una tecnología emergente que explota tanto la carga del electrón como su espín para sintetizar dispositivos para la memoria y el procesamiento de datos. Los expertos esperan que esta tecnología tenga en el futuro un impacto radical en los dispositivos de almacenamiento masivo.

Otros logros

Asimismo, los investigadores también han propuesto que combinando oro y manganeso se podrían fabricar otros superátomos con momento magnético pero no conductores de la electricidad y que tendrían aplicaciones biomédicas diversas como de detección, captación de imágenes o suministro de medicamentos. Los detalles de este trabajo han sido publicados en la revista Nature Chemistry en un artículo titulado “Designer magnetic superatoms”.

Éste no es el primer logro de Khanna y sus colaboradores del que tenemos noticia. Según publicaba la revista ScienceDaily a principios de este año, los científicos descubrieron la manera de producir hidrógeno exponiendo grupos de átomos de aluminio al agua. La unión de los átomos de aluminio con los del agua no se basó sólo en sus propiedades electromagnéticas sino también en los tipos de estructuras geométricas implicadas en el proceso.

lunes, 15 de junio de 2009

Estructura del ADN

Trabajo Práctico Estructura del ADN

Integrantes del equipo: Natalia Falivene - Luciana Yugar -

Celina Amicone - Romina Chavez

Escuela Secundaria n° 3

Detrás en el pizarrón, Síntesis de la Atmósfera Primitiva (hipótesis de Oparín)

El Origen de la Vida

Un nuevo sistema que imita al ADN ayudará a comprender el origen de la vida
Además, podría servir para crear materiales auto-reparables .
Científicos del Instituto de Investigación Scripps de Estados Unidos han creado un nuevo análogo del ADN que es capaz de ensamblarse y desensamblarse a sí mismo. Este nuevo sistema contiene componentes que podrían haberse encontrado en la Tierra antes de que en ella apareciese la vida, por lo que los investigadores creen que les podrá servir para comprender cómo pudo emerger ésta en nuestro planeta. Por otro lado, futuras aplicaciones del análogo van desde la generación de materiales capaces de repararse solos, hasta materiales que se remodelan a sí mismos en respuesta a los cambios del entorno.
Un equipo de científicos del Instituto de Investigación Scripps de California, ha creado un nuevo análogo del ADN que se ensambla y se desensambla a sí mismo, sin la ayuda de enzimas (algunas enzimas se utilizan para clonar fragmentos de ADN). Dado que este nuevo sistema contiene componentes que podrían haberse encontrado en la Tierra antes de que apareciese la vida, los científicos esperan que les ayude a comprender cómo pudo emerger ésta en nuestro planeta. Por otro lado, según publica el Instituto de Investigación Scripps en un comunicado, este análogo del ADN podría ser un punto de partida hacia el desarrollo de nuevos materiales capaces de auto-repararse o de transformarse en respuesta a su entorno.
Reproducción a gran escala de una secuencia de ADN
en el interior del Museu de les Ciències Príncipe Felipe.
Mientras que gran parte de los trabajos realizados hasta ahora con los análogos del ADN, como el ANP (ácido nucleico peptídico), se han focalizado en las bases nitrogenadas del ADN (que son complementarias entre sí y forman parejas), ya ancladas a unidades troncales, para diseñar su sistema, Reza Ghadiri tuvo la idea de trabajar con bloques de fabricación más simples. Si estos bloques tenían lazos que se invirtieran fácilmente -a diferencia que en el ADN o en el ANP- esto podría evitar la necesidad de enzimas, al tiempo que se mantendrían las características claves de la codificación de la información. Como resultado, los científicos desarrollaron un sistema formado por péptidos y el aminoácido cisteína. Este aminoácido se enlazaría de forma reversible con un compuesto orgánico conocido como tioéster. Así, los científicos crearon un ácido nucleico peptídico tioéster (tANP), con el que es posible que las bases nitrogenadas del ADN se acoplen y se desacoplen del tANP formando ensamblajes variables. Al unir el tANP con el ADN, las hebras complementarias de ambos se ensamblan. Estos apareamientos pueden después abrirse añadiendo nuevas hebras complementarias de ADN, para que se generen otras estructuraciones. Por otro lado, Ghadiri y su equipo también han demostrado que una hebra de tANP puede actuar como plantilla, generando la formación de tANP complementario, aunque todavía no se ha podido lograr la auto-replicación del tANP, que sería un objetivo final de la investigación.

Los científicos están tan sorprendidos como fascinados por la cuestión de cómo pudo surgir en la Tierra la vida. Una de las teorías más generalizadas señala que, antes de que apareciera el ADN, las formas de vida más primitivas usaban el ARN (ácido nucleico formado por una cadena de ribonucleótidos) para transmitir sus códigos genéticos. Esta idea es la conocida como hipótesis del “Mundo del ARN”. Sin embargo, muchos investigadores señalan que el ARN sería demasiado complejo, por lo que algo aún más simple debió precederle, en las formas de vida primitivas. Reza Ghadiri, químico del Instituto de Investigación Scripps y director de la presente investigación, ha estado trabajando durante años para descubrir qué replicadores y sistemas genéticos podría haber antes de la llegada del Mundo del ARN. Uno de los focos clave de sus estudios ha sido el papel de unas moléculas orgánicas llamadas aminoácidos en esta cuestión. Ya en 1996, Ghadiri y sus colaboradores demostraron por vez primera que las hebras de aminoácidos y de péptidos (moléculas formadas por la unión de varios aminoácidos mediante enlaces peptídicos) del ADN podían auto-replicarse en condiciones en las que no hubiera enzimas. Ahora, Ghadiri y su equipo intentan generar un sistema capaz de realizar procesos similares a la evolución darwiniana. Según el investigador, el análogo de ADN conseguido sería “el primer paso hacia ese objetivo”.

El Mundo de las Enzimas

Algunas enzimas se utilizan en biotecnología para clonar fragmentos de ADN
El proceso normal de digestión de los alimentos, mediante la acción de las enzimas, da como resultado nutrientes elementales (aminoácidos, glucosa, ácidos grasos, etc.) que asimilamos en el intestino y son aprovechados por el organismo. Sin embargo, cuando las enzimas no pueden actuar o su cantidad es insuficiente, se producen procesos de fermentación y putrefacción en los alimentos a medio digerir. En este caso, son los fermentos orgánicos y las bacterias intestinales las encargadas de descomponer los alimentos. La diferencia es que en lugar de obtener exclusivamente nutrientes elementales, como en el caso de la digestión propiciada por las enzimas, se producen además una gran variedad de productos tóxicos (indól, escatól, fenól, etc.). Estas sustancias también pasan a la sangre, sobrecargando los sistemas de eliminación de tóxicos del organismo.
Enzimas digestivas

disminuyendo el nivel de la "energía de activación" propia de la reacción.

Se entiende por "energía de activación" al valor de la energía que es necesario aplicar (en forma de calor, electricidad o radiación) para que dos moléculas determinadas colisionen y se produzca una reacción química entre ellas. Generalmente, las enzimas se nombran añadiendo la terminación "asa" a la raíz del nombre de la sustancia sobre la que actúan.Las enzimas no reaccionan químicamente con las sustancias sobre las que actúan (que se denominan sustratos), ni alteran el equilibrio de la reacción. Solamente aumentan la velocidad con que estas se producen, actuando como catalizadores. La velocidad de las reacciones enzimáticas dependen de la concentración de la enzima, de la concentración del sustrato (hasta un límite) y de la temperatura y el PH del medio